number theory: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
m (Conversion script moved page Number theory to number theory: Converting page titles to lowercase) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
See also [[ | See also [[Abstract Algebra|Abstract Algebra]] | ||
*prime: [http://www.lojban.org/jbovlaste/dict/m mulna'usle] | *prime: [http://www.lojban.org/jbovlaste/dict/m mulna'usle] |
Latest revision as of 08:27, 30 June 2014
See also Abstract Algebra
- prime: mulna'usle
- unit: jicmu namcu: cmuna'u
- A unit in an integral domain is a number that every number is divisible by; e.g. the units in Z are 1 and -1, and the units in the Gaussian integers are 1, i, -1, and -i.