# Difference between revisions of "BPFK Section: Non-logical Connectives"

## Proposed definitions

### jo'u (JOI)

#### Definition

And. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly.

• And

#### Examples

.i mi jo'u la .clsn. cu ciksi tu'a lo cmavo be zo coi
Me and Shoulson are explaining about the cmavo of selma'o COI.
lo za'e tridu cu mixre lo tricu jo'u lo tcidu
A 'treeder' is a mixture of a tree and a reader.

{BOX}

### ju'e (JOI)

#### Definition

Vague connective. Joins two sumti into one sumti. The referent of the resulting sumti is some function of the referents of both sumti.

#### Keywords

• Vague connective

#### Examples

mi'a casnu zo jetnu ju'e zo fatci ju'e lo si'o jetnu ku ju'e lo si'o fatci
We are discussing about "truth"/"fact"/truth/fact. (IRC, Eimi, 22 Dec 2008 07:40:19)
.i ji'a co'e lo plise ju'e lo perli ju'e lo drata:Also an apple and a pear. (IRC, xalbo, 5 Oct 2010 12:50:22)

{BOX}

### fa'u (JOI)

#### Definition

Respectively. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and distributively in correspondence with another term.

• Respectively

#### Examples

mi fa'u do klama lo zdani fa'u lo zarci
Me and you go home and to the market, respectively.
li pano fa'u li cinono cu jdima lo nu klama fu lo girzu karce fa'u lo vinji
Ten and three-hundred are the prices of going by bus and by plane, respectively.

{BOX}

### joi (JOI)

#### Definition

Non-distributive group. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and non-distributively.

#### Keywords

• Both
• Together with
• And

#### Example

mi joi ry. ze'a casnu lo lijda ctuca tadji
Me and R have been discussing religious teaching methods.
la .djan. joi la .pitr. cu re mei
John and Peter are two.
la jegvon cu cevni le xriso joi le xebro joi le muslo
Jehovah is the god of the Christians, the Jews and the Muslims.

{BOX}

### ce (JOI)

#### Definition

Joins two sumti into one sumti. The referent of the resulting sumti is the set whose members are the referents of both sumti considered jointly.

• And (set)

#### Examples

.abu ce by ce cy vasru .abu ce by
{a, b, c} ⊇ {a, b}

{BOX}

### ce'o (JOI)

#### Definition

Joins two sumti into one sumti. The referent of the resulting sumti is the sequence whose members are the referents of both sumti considered jointly.

#### Keywords

• And (sequence)

#### Examples

jukpa ce'o citka lo cersai co'o ru'e
Making and eating breakfast, bye for now.
.abu ce'o by cu mleca cy ce'u dy .ijo ge .abu mleca cy gi by mleca dy
(a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d

{BOX}

### jo'e (JOI)

#### Definition

Union of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the union of the sets referred to by each sumti.

• Union

#### Examples

lo'i brivla cu du lo'i gismu jo'e lo'i fu'ivla jo'e lo'i lujvo to po'o xu toi
The set of brivla is equal to the union of the set of gismu and the set of fu'ivla and the set of lujvo (only?).

{BOX}

### ku'a (JOI)

#### Definition

Intersection of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the intersection of the sets referred to by each sumti.

• Intersection

#### Examples

xy cmima .abu ku'a by .ijo ge xy cmima .abu gi xy cmima by
x ∈ A ∩ B if and only if x ∈ A and x ∈ B.

{BOX}

### pi'u (JOI)

#### Definition

Cross product of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the cross product of the sets referred to by each sumti.

#### Keywords

• Set Product
• Cartesian Product

#### Examples

le'i bebna ku pi'u le'i mabla sidbo ku cu barda
The cross product of the set of silly things and the set of bad ideas is large.

{BOX}

### Formal definitions

||

sumti1 JOI sumti2

ge sumti1 gi sumti2 me sumti1 jo'u sumti2

sumti1 ju'e sumti2 | lo co'e be sumti1 bei sumti2

sumti1 jo'u sumti2 | lo sumji be sumti1 bei sumti2

sumti1 jo'e sumti2 | lo jomsumji be sumti1 bei sumti2

sumti1 ku'a sumti2 | lo kuzyterkruca be sumti1 bei sumti2

sumti1 pi'u sumti2 | lo pivypilji be sumti1 bei sumti2

sumti1 jo'u sumti2 | lu'a sumti1 jo'u sumti2

sumti1 joi sumti2 | lu'o sumti1 jo'u sumti2

sumti1 ce sumti2 | lu'i sumti1 jo'u sumti2

sumti1 ce'o sumti2 | vu'i sumti1 jo'u sumti2

sumti1 fa'u sumti2 sumti3 fa'u sumti4 selbri

== sumti1 sumti3 selbri .i sumti2 sumti4 selbri

||

### Notes

1. The definitions given correspond to their use as sumti connectives. Other uses (when they make sense) have yet to be added.